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. INTRODUCTICHN AND NOTATION

+

It has been known for many years that displaying the
frequency components of a signal as a function of time is

a valuable sifnal analysis technique. This is rarticularly
true for nonstationary signals, such as speech, whese
freguency structure is different from mement to moment.

In the case of speech, the spectrograrh has been widelv
usel te plot a time-freguency representaticon cf a spoken
signal.

be

In this parer two time-frequency functions will
studied; the ambiguity function and the Wigner distribution.
These functions are closely related and yet are dissimilar
enough so that each provides a valuable perspective to
signal analysis problems. Of particular interest is how

these functions characterize the Heisenberg uncertainty

principle.

§1. DMNotation

The following notation, definitions and theorems will
be used frequently.

a. Given f ¢ LQC?), the Fourier transform T of

f, sometimes noted as T = f, is defined as
(1) F(v) = J Flt)ye ™Vt gt

Here, as throughout this paper, unless othewise noted
the limits of integration are assumed to be from -~= to +«,

The inverse Fourier transform is defined as

[ PSSy 4 AA.'vp‘.l-‘.

. .
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(2) £(t) = =& J F(v) etV gv.
27

- 2 .
The L -norm of f 1is

tale RS

(3) g 1z

{
(J]f(t)!Q at)

The L2—norm of T = ? is i
‘ 1 2 1/2
It -
(%) “F = (5; JIF(V)I dv) .

~

c. Convolution Theorem: If f = F and g = G are

Fourier transform pairs and h = fg then the

Fourier transform of h 1is

f
(5)  H(v) = S | F()G(v-rddr = (F#G)(v). :
J B

d. Plancherel's Theorem: Given F ¢ L2GP) then

there is a function £ ¢ LQGR) such that T =

>
>

and !'fit = UFHI,

e. The Schwarz inequality for L?-functions is

f 2 _ [y y2 10, .2
() || fel© = Jlfl J]gl .
J
£ §(t) 1is defined to be the Dirac measure having
the property that
. Accesstion F:x- T
(7) J f(e)é(t)dt = f£(0). NTIS Gragr
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1T, AMBICUITY FUICTION
In this chapter the ambiguity function (AT) will be

me oI 1t

v

more useful properties will be stated

-

will be shown to arice naturally from

w3
o
T

ani rroved.

the ocutput of a rmatched filter and its srecific arrlicaticn

(&Y

to the radar problerm will be discusse In the course ¢_
calculating several examples, an interesting theorem con-

cerning the linear transformaticn cf the coorcdinate axesg

- S AR B s ASEA S i A A A A 2 ssmna a &

-
T

of the AF will be stated and prcved. Tinally, the A
will be related to signal duration and shown to charccterize
the Heisenberg uncertainty principle.

The AF was originally introduced in 1948 by Ville *
in the context of a general signal analysis tool. Applica-
tion of the AF to the radar problem was given by Woodward '
in 1950 [21]. Subsequently, many of the properties and *
theorems ascociated with the AF have been presented by

Siebert [16] and Wilcox [201]. f

§2. Definitions

Y

The AF for a given signal f has several common

definitions. The definition most similar to the Wigner

s . . . . 2
distribution was chosen for this paper. Given £ ¢ L @)

[ and continuous, the AF X of f 1is

e [ _

[ (1) Gt = | fC +2)F(t - De Ut gt

E Although the definition easily generalizes to a function of
e two continuous, L2-functions, such a definition does not

A a a a.a . .




have a simple raveical Interpretation and will nct te

studiel, If f  is not continuous it will be treate” acs
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For example, in th

Tollowing scction, the AF will be shcown to be the cutput
moiulation of a matched filter. In that secticn the
ambicuity function will be defined as
r .
———— =1ut
(2) OC(u,t) = Jf(t)f(t—r)e dt.

X is related to O by the formula,

-1

; UL
e 2 OCu,t).

(3) X(u,1)

In racdar waveform design, it is the magnitude of the AT

which provides the measure of resolution and ambiguity in
f. Thus, in this context definitions (2.1) and (2.2) are

eguivalent. In Papoulis' text the AF is normalized [12].

nis def

e

niticn is not selected so that generalized functions

[N

may -e studied.
Consider now the expression for X 1in terms of the
Fourier transform of f. TFirst, let the kernel function

v be defined. Given £,

T
(4) v(t,t) = f(t+%)f(t-;).

L
The AT of £ die the Tourier transform of vy for fixed

T. That is, VY1 ¢ Ir
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% . (3) Xx(u,t) = J Y(t,T)e-IUt at.

This expression is valid, if for each 1 € T,
.1 ~ . ..
y(eyt) € L7(@@). To see that this is the case, 7ix 1 ¢ =

and use Cauchy-Schwarz in the following;

(o) (J\.wmncmz . fo<t+ M e -Plan

ro_,2f 2 f 2.2
s LT g = (|[f] ) .
J J J

. 2 1
ince f € L°(@®), then y(e,t) € L7 () for each 71 € I
and (2.5) is valid. Now define the two-dimensional Fourier

transform T of the function Y

rf s
(7) Flu,w) = | ve e TNV g
Calculate this integral,

: rf T T, -i(ut+vt)

. T(u,v) = JJ t+2)f(t -3)e dtadt

. 2 2
'F = J J F(r)FlrTye TU0 grye 1TV D),

[ - -iut .

. If f = F then f(r-1) «> e F(-u). Fy the convolution

3 theorem,

C i
- £ 01 (e -3 :1( 2 |
§ rla,v) = J O J F(<s) e *57 F(u-s)ds)e *' veu/2) g, :
k. !

Eﬁ - -iat L. . :
- Since e «+ 2n8(v+a), we may forrmallv write, .
¢ !
" r :
. T(u,v) = | T(=e)F(u-s)8(stv=-u/2)ds. .

] .

[ Hence, .
¢ i
b

q {
)

; _ . :

s . - R . .
G S S P D VO S Bty .
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(8) F'(u,v) = TF(v+u/2)F(v=u/2).
i
The two-dimensional Fourier transform is an iterated _

integral, consequently (2.5) and (2.7) may be combined to

cive,

(3) y(t,1) oy X(u,T) < T'(u,v).

y Cauchy-Schwarz we see that for fixed u € IP,

u

f f
(10) (Jlr(u,v>|dv)2 = (| lrn]an?,
Since f ¢ LQGP), by Plancherel's theorem, T € LZGP)
and we conclude that for every u € IR T(u,°) ¢ Llom).

e mav then write from (2.9),

1 ! u Uy _dvT
1 X _(u,t = = =)F - = .
(11) f( sT) 5 J F(v +2)r(v 2)e dv

;' If definition (2.1) 1s used to define the AF of the

“ourier transform F, we have

r _
: (12) X (u,1) = f F(v +5)F(v -5)e Y av.
é
= :
g X. 1s related to XF by the formula,
1 (12) X (u,T) = Fm Xo(=T,u)
b : £ 2n °F [
(]
[ Thus the AT of the function f 1is a scaled and rotate!
version of the AF for its Fourier transform FT.
¢

S A N o e o SRR ce
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In this section the AF will be shown to he the
ccmplex modulation function out of a matched filter
receiver. This will help interpret the time-frequency
Tlane on which the AF 1s defined and provide a foundation
for an interpretation of the function's nroperties.,

A radar (an acronym for RAdio Detection And Ranginr)
transmits electromagnetic energy which propagates in the
atrosphere. Derending on the reflective properties of the
obijects that this energy contacts, some of the signal is
reflected (or reradiated) back to the receiving system.
Based upcn the difference between the transmitted wavefornm

and the reflected waveform, the radar system extracts

information atcut the target.

location in range and its relative motion (radial velocity).

The radar will be modeled
Although there are may ways to
the matched filter is the most

shown to be the optimum filter

problems. In particular, the matched filter has been
shown tc maximize the signal-to-noise ratio in the presence

of additive, Gaussian white noise [101. Also, it has been

mi

(0]
o
e}
=
o]
-t
Q
]
\]
¢
[N

]
0

rawimur likeliheoZ criterion [4]., Tinally, in a deter-
rministic sense, siven a known s
filter has been chown to be the imrulse recsponse which

maximizes the cutput at a riven time with respect to all

the probability of detection using the

Of interest is the target's

as a matched filter.
design a receiving system,
common because it has been

for a very large class of

ifrnal inrut., the matched

4
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cther linear. time-invariant svstems [17].
Two ascumptions are made in this Jdevelaorment. Tircot,

Tne sirnals are '"marrowhand" signals. Thic means that
siven the radar signal icg
() s(x) = a(t)cos(ut+l (L)),

tnen a(t) and ©@(t) vary slowly relative to the hirh

1y
[N
]
=]
[
~+
b=
O
o]
9}
'y

carrier fregquency w. (A more precise de

narrow>and may be found in reference 4). This permits

(2) (1) = c(t)et®t,

where w is fixed, the complex modulation is

(3) c(t) = a(t)e®T)
anz
(1) Pe £(1) = s(t).

(3.2) is the complex signal reprecentation of the signal
s(t) and is discussed further in Appendix A.
The narrcw-zand assumption is alsc necessary to

represent the doprler effect on the reflected signal as

(D

is

33

{

crely a shift in frequency. The doppler aporoximatic

3

develoned in Ajrendix &. Tortunately, the narrowband

-3 £
a4

r alrcet all racar applications. An

s
Q

assumption i wvall
application where such an assumption is not valid is in

sonar.




P SN "R P AR S e B P N S R M R M o * I S SR T A A TR Sl i i M I Bike T i S "R Sal Sl NP S B b Diall ek W ‘.‘\*

Secondly, for reasons of clarity, the transmitter and
the target from which the electromagnetic energy is
reflected are modeled as point sources. Modeling the
transmitter as a point source is accurate since the
antenna characteristics do not effect the time delav or
dorpler shift of the returned signal. Modeling the tarret
as a point source ignores relatively small effects on the
returned signal which do not serve to clarify the meaning
of the ambiguity function.

To begin, define the transmitted waveform

c(t)elwt,

(5) ft(t)

The subscript t denotes transmitted. By definition of a
matched filter, the impulse response of a linear, time-

Invariant filter matched to the transmitted waveform ft is

(6) h(t) = ft -t

If %t = Pt’ then the transfer function of the matched

filter is

H(u) = Ft(u).

The radar sends out ft' What returns to the radar

(assuming a target 1s present) is a time delayed, frequencv

shifted version of ft' The time delay T 1is related to

the range of the target R, by

(7) T = =,

. Y T N v



R Al

v 1s the velocity of propagation of the signal and 1 is ]
the time it takes the signal to make the trip out tc the

target and back. The doppler shift u 1s related to the

PP ER

racdial velocity v of the target by,

(8) u o= TwY

<
A A

w 1s the fixed carrier frequency in radians. The result-

ing reflected signal, when it enters the matched filter, is

(9) f () = c(t-1 )ei(w—ur)(t-Tr)
r r
Subscript »r denotes returned.

The radar designer wishes to maximize the probability
of detection, hence, would like to match the receiver's
filter to the return signal fr' But the parameters Th
and u, are dependent on the target and therefore not
known a priori. Consequently, the designer must anticipate
a time delay T and a freguency shift u . Then the

signal to which the filter is matched is

i(w-u )(t=-7 )
(10) f () = c(t-1 e m m
m m

t1s

y (3.86), the impulse response of the filter matched to 3

H

is
n

~i(w-u J)(=-t=-1 )
m m

(11) hm(t) = c(-t-Tmfe

The output v of the filter h with the input £ is

;‘“4 < AA.#AJ_‘L L

LN Y

v_-‘_‘
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v(t) = (h_=f )(t)
m" Ty
f
= | f_(x)h (t-x)dx
j r m
r I(w-u VY (x=-1 ) ~1(w=-u Y(-t=-1 *3x)
= J cx~-1_)dc r P ol-t-1 *+x)e i = e,
r m
et n = x - T
¢ i(w=-u_Jn -i(w-u d(n+t_-t-1_)
y(t) = jc(n)e ' T+t _-t-1 _Je m r T an.
r m
Llet 7T =t + 1T _ -1 and u = u_ - u , then
n T r !
+iT(U.)"u ) r _iu
(12)  y(t) = e m J ctme-t)e " dn.

Compare the integral on the r.h.-side of (3.12) to (2.2).
We see that
+it(w=-u_)

(13) y(t) = e T oCu,t).

For a given target, u, and T, are constants,
W s um and Tm are fixed design parameters and therefore
the AF, 0(u,1t), 1is a function of time (1 = t+Tm-Tr)'
Compare (3.13) to (3.2) and we see that y(t) may then be
interpreted as having two components; the carrier and the
complex modulation function ©0(u,t). If y(t) 1is viewed
as an information - bearing signal we might expect to

extract that information from the modulation functicn

©(u,1). How well that target information is recovered will

depend on the character @(u,1).
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Resoluticn and ambigfuity are two measures of how well

icn can be extractel from the function €. Con-

fb
+

inform
sider first resolutiocn. Given design parameters u and

T the AT at a srecific time t 1is a function of the

tarret parameters u and T_. Without lcess of generalitwy

r r

~

we can study the ©9(u;1) at t = 3. Then the origin of
the (u.T)-plane represents the point where the radar
designer has precisely anticipatecd the reflected signal's
parameters. Points in IR2 away from the origin represent
mismatches. The shape of the AF near the origin will
dictate how well one can distinguish the actual return
from (0,0). This is a measure of the resolution of f.
ilext consicder the ambiguity of f. It will be
shown that all AFs have a maximum at the origin. Shculd
the AT have peaks away from the origin, then for a
given threshold a, the set E = {(u,t) :|0(u,T)] > a}
may be disjoint components of the plane. Ambiguity then
arises in determining in which component the actual
returned parameters lie. Both concepts will be discussed

in greater detail in Section 6.

§u. Properties

1. X has a global maximum at the origin;

(L |xCu,t)| = X(0,0), ¥ (u.T) € TR,
Proof. Let g (t) = f(t+ e ™ and g,(t) = £(t- ).

Then by (1.6)

R |




.......................

% f f f ~
FICRRIRES] g (D (n)ae| 7 < | (0] ‘at Jlry 0] fax.

| &4
Substituting for £, and g, we obtain,

2 f
() ol s el e’ s a0’

) d
he result may be stated as [X(u,7)| < "f£ °, cince !
<

. © 2 .
(3) x(0,0) = J | £Ct)}° et = "FTO,

[= o}

2. Symmetry.

() a.) Xx(u,t) = XxX(-u,-1).
Proof. HNote that y(t,-1) = f(t -%)f(t +%) = y(t,t3. Then
Y(-u,-tJ = J Y(t,-r)e-lut dt = X(u,T1). #

b.) In general X 1is a complex-valued function. If

f 1is real valued and either f(t) = f(-t) or

f(-t) = -f(t) then X 1is real-valued. That is,
(5) x(u,t) = XCu,t).

Proof. Only the case of odd symmetric f will be verified.

The case of even symmetric f easily follows. MNote that

. f real and odd implies

=

" - -

¥ YO=t,1) = f(-t +§>f<-t -3) = f(e+ Dt -5 = y(t,T).
F

. Then

3

r - . r - -.

E x(u, 1) = J et gt = J T, 0e U gt = x(u,t). #
(]

r.

~

-

q

4

3
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3. Translations of f(t) and Flw)

a.) Let Ta be the translation operator, that is ]
|
f = + - :'
Ta‘(t) f(t-a). !
Then
- ) - iau .
() XT f(u,r) = e xf(u,T).

a

Prooz. The result follows from the fact that

T 2(t,T) = v (t-a,T). #
-a‘ -
.) If T F(v) = F(v-b) and g(t) «» F(v-b) then
A
ibt
(7) Xg(u,T) = e Xf(u,T).
. . ibt ]
Procf. It is known that e f(t) «» F(v-b). Hence 1
o
ib(t +%) T -ib(t—%)—-——,[_— N
Yg(t,r) = e f(t +—2-)e f(t'i) X
- }
- = Ty (e, '
3 The result follows by the definition (2.1). 4
r
f’
4 4, Modulations of f and F by simple sinusoids.
.
4 Let M_  Dbe the modulation operator defined as
- 4
- i b
i; M_E(Y) = et f(1), ;
g 4
4 ibv N
¢ an-i v P =
Y I “b‘(V) e F(v). ﬂ
b
{ iat 1
t (8) Then IPICT S BRI S UGN OF 3
; La~ R
' ?
} .
b . J
L 1
3
t‘
AR SRS SRR
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Furtherrore, if g <= MbF then

() Y (u,T1) = e Xo(u,1).

£ I
Proct The proof of (4.8) is the same as that for (L.7),
and the procf cof (4.9) is the same as that for (4.€). 4

Concise statements may also be made for the AFs of
Fourier transforms. TFor example, property 3b may be

written as

(10) Xe p(u,T) =TT x (u,T).

a

Proof. Let g «~» TaF, then from (2.13),

XTaF(u,T) = 2ﬂxg(r,-u).

From (4.7) and again (2.13) we conclude,

-iaz

X 2me Xf(T,—u)

T F(u,T)
a

e_I&JXF(u.T). #

We conclude from equations (4.6) and (4.7) that the modulus
of the AF 1is invariant to translations of f or F.

This 1s a significant feature of Afs.

§. Multiplication of functions.

The previous results can be generalized to modulaticn

cf f by any function g.

Let h = fg, then

et M
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(....L) - (u [) - " (I [) (U-I g[)dln
K_ L 2.T Xf k] X .
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FrooI., lotice that Yh(t,T) = Yf(t,T)Yg(t,T) then

[ i 8
xh(u,T) = J yf(t,T)yg(t,T)el“t dt.

[ J0

Hold T fixed and use the convolution theorem and the

result follows. #

6. Linear filtering.

Let

h(t) = (fag)(t),

where g 1is the impulse response of the linear, time-

invariant filter. Then

(12) xh(u,r) = j xf(u,r)xg(u,T-r)dr.

Proof. It is known that with h(t) so defined,

H(w) = F(w)G(w),

r;: ~ ~
& where f = F and g = G. Use (2.11) to write,
; L _
‘ u u ivt
3 = = + = -= o
f xh(u,r) T J H(v 2) H(v 2) e dv
- e —_—
-, 1 ! u u u u ivT
. = = + = -2)G(v +=2) G -2) S
p{ 5o J F(v 2) F(v 5 G(v 2) (v > e dv
'
3
k The result follows from the convolution theorem and (2.8)
9 and (2.9) which state that for fixed u ¢ IR
)
-
H
-
[
[
YR . L . O S TR A T s
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s and

{ u u
IS . «> G(v + = - =),
gm - xh(u T) . (v 2) G(v 2)

7 Dilation
Let g(t) = f(at), for s me a ¢ IR,
1
(12) then xg(u,T) = la!Xf(g,aT).
Proof. Bv definition,
r e — -3
xg(u,T) = J f(at +§21) f(at-a—;—)e tut dt.
For a > 0 we conclude that
r S
art art al
= 2y f 2L =
Xg(U,T) J f(r + 2) (r 2)e 2 dr
- 1 u
= 3 Xf(a’ at).
For a < 0 we conclude that,
KTy = - 2%, an),
So VYa ¢ IR,
Xg(u,T) = TiT Xf(g, at) &

8. Invertibility and Uniqueness.
Given an ambiguity function X, the generating
function f may be uniquely recovered to within a multi-

plicative constant ¢ € € such that |c| = 1.
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Prcof. Assume two functions f and g generate the care

Then by the uniqueness of the Fourier transform we can

conclude that v, = Y, That 1is
(1u) E(t+3) f(t-3) = glt+3) glt-3).
- T - :
Let tl =t + 5 and t2 =t - %. Then (4.14) is,
f(tl) ~
a—t? = g(tz)/f(‘tz), vt ,.t, € IR,

Hence, Vt € IR, g = cf and

Ol
w2

fR i~

% = ¢ so l:]clz.

This raises the question as to how one identifies an
ambiguity function. That is, what are the necessary and
sufficient conditions for a function Xx(u,T) to be an AF.
This is of particular interest in radar waveform desisn
where one would like to establish the AF so that X
displays the desired resolution and ambiguity character-
istics. After inverting X. the designer would have f,
the suitable radar signal. Much work has been devoted to

this effort but the best that can be said about the

KPR SUAPORADRARE ] RN
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sufficient conditions for X to be an ambiguity function
is that when the inverse Fourier transform is performed cn
X(u,T), with respect to the u variable, the result is
the factored form of the generatine function Y(t,1). To

be more precise:

9. X(u,t) is an ambiguity function if and only if

i U
2

(t.+t.)
-tl)e 1 2 du.

1 f
(15) f(tl) f(t25 = 5 J X(u,t2

Proof. The necessary and sufficient conditions are just

a restatement of the definition. Let tl =t - % and

t2 =t + %, and rely on the uniqueness of Fourier transforms.
10. The sguared-magnitude of X has the unusual property

of being, after a coordinate transform, self-reciprocal

in the two dimensional Fourier transform. That is,
-1 +
(16) ”]X(U,T)I2 R AL RPN . QFIX(t,—v)lz.
J

Proof. Use definition (2.11) for x in terms of F = f,

and property (4.4} to obtain,

L f F(v —%) F(v +§) e VT 4y,

(17) ¥(u,t) = X(-u,-1) o7

Use this expression in the expansion of (4.16) which follows.

.~ - - .
- . .
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f f NS -iuw ] f — 1
| £( S)F (e _T 1u — ~ - u u o 1T .
JJ(J-( t ( 2)9 H.A)(?wT J Ty 2)?(y+2)\ dv)

-i(uv+Tt) ., |
x e dudT.

Use the chanre o variarles r = » + % ant ¢ = v - %, then

- \r++"1'
(J[X(Usf)!? e 1(uv+t dudr =
J

JJf(r)F(s)(J?T?T?7e-iT(S+t)j1)(5% ]F(s+u)e—iU(r+V)du)drds.

The first inner integral is,

r . -
J Flr-1) e_lT(S+t)dT - Tir(stt) F(s+t).
The second inner integral is
r — _3 + .
f% J F(s+ule fulr V)du = elS(P+V)f(r+v).

.

]

Substituting these back into (4.18) and rearranging terms,

we see that

JJ[X(U,T)IQ e-l(uV+tT)dudT = Xf(t,-v) i;Tv‘t).

The result follows from the formula (2.13). #

> 11. The radar uncertainty rrinciple.
|
: Integrating ]x|2 over all of IR2 we have the
[ interecting result,
LY
1 f "
g (19) = JIIX(u,T)!Q dudt = [x(0,00|% = st
p )
< )
[ j
g .
o ’
.
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Procf. This is a special case of (4.1¢) with v = t = 0, ¥

his property can be interpreted as the "conservaticn

cf armbifuity prorerty." It says that the best a radar 1
1

4

lesirner can do, given a srecific enersv constraint is tc 1
o 1

S . . . .. . h

cnift the arbiruitiez inherent in f  to the unuced rart: i
‘i

of the (u,7)-rvlzre. Anotrer interrretation is that the

armount cf ambiguity in f 1is invariant over the class of
- . . . 2 . . . .
functions whose L -norn 1s the same. This will be further k

wn
o
e
fu
3
h

mples of  AFs,

i+

In this section examples of AFs will be calculatez.

Each illustrates some of the properties of Section 4. The

sifrnificance of some examples will be discussed more fully
in Sections & and 7.
Example 1.

1 for |t| < T
Let £(t) = o.(t) =
0 elsewhere.

1
]
1
-
K

Then by (2.4), y(t,1) = PT(t+%)PT(t—%). y(t,T) is unitv

inside the rhombus below and zero elsewhere,.

APt
T

.r M)
T\ LIS 3 Sa

2T r ¥

‘-
A it

Figure 1
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Fanrs
S defindtion (2.5),
f -lut
v(u,t) = | vy (r.T)e dt.

J
Tor fimel 1 ¢ [-27.27] the limits of interration arc
Tt = =T+ 12|/2 tc ot =7 - 11|/2. Thus

S5 R RS

e dt,
—T+[Ti/2

o
~
o

-
—
~

"

anZ we conclude

2. | -
i Gs;n[u(T-L§L] for |t} = 2T

(1) x(uyt) =
0 for |t| = 27

otice that fer T = 0 and u = 0 we have

¥(u,0) = %sir uT for all u € IR.
and
2T - |t| for 1] = 27T
x(2,1) =

0 elsewhere.

These are sketched in Fipure 2,

4 .
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Example 2. Let f(t) = e Pn ().

The using prorerty 4 and the previous exanmple,

et giﬁfiu(T —L%L)] fer |1] = 2T
(2) x(u,t) =

0 for |t| = 27
Example 3. Let f(t) = e™®t for all t € TR.
Then, formally,
(3) x(u,) = ( Jlalt+r/2) -ia(t-1/2) ooiut o

J

Recalling 1 +» 278(v), (5.3) is

Xx(u,t) = 2me §(u), Y1 € IR.

This means that the AF of f concentrates all of its
mass on the u = 0 axis. Hence, f has perfect resolution

of the u variable, but nc resolution of the variable T.

N
Example 4. Let f(t) = ) s(t-nT),
n=0
T

f 1 for t ¢ [O,;]
t where s(t) =
f 0 elsewhere.
-
= f 1s a coherent train of N +1 pulses of width %, and
. separated by a gap %. (Figure 3).
L
L
‘v .
.
.
=
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Figure 3
There are several references for calculating X. The most
general is in Bird [2]. The following is a special case
of Vakman's calculation [19].
First calculate the F.T. of f.
N . N .
f -
F(v) = J )} s(t-nT)e L ) S(v)elvnT.
n=0 n=0
Then from (2.8) we see that
T(u,v) = F(v+ (v -2)
2 2
SR - -i3T(m+n)
= ) } S(v +;)S(v —%) elvT(m-n) e 2 ‘

n=0 m=0

By definition (2.11), the AF of f 1is

voon =i%(men)
N =1l-={mrn —_— .
X(u,7) = ] Je ? Llscy+ sty - elvTm-n) VT gy
> 2m 2 2
n=0 m=0

The inner integral is the AF of s, where s = S,

T e

aiacdP L

QI [ P g a .

A W Ay
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evaluated at 1 - T(n-m) 1i.e., -
Noon —i%i(men) i
. 2 .
¥(u,t) = ) ] e X (u,7=-T(n-m)). ¥
n=0 m=0 s )
Change the variable n for the variable k by letting J
|
X = n-m: then k takes on integer values - to N, and ik
N . ukT )
i -1—= N .
-imuT )
x(u,t) = ] X (u,t-kT)e 2 ] e ]
k== S m= 0 i
Define .
_;ul, o,
o ‘. i T
s (W) = e 4] T

The sum is easily computed so that,

.uT .
-1—§(k+N) s1 [u(I+l)T/2

6. () = e . uT >
k sin —&
2
and
I
X(u,t) = l X (u,t-kT)¢. (u).
K=ol s k

Compare the mangitudes of |¢k(u)| and IXs(u,O)l. For
larege I, !¢P(U)l is a periodic function having spikes

cf magnitude 1!i + 1. (Figure 4L).
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N+ | 1} ‘
/ ( 1L (0,0, +

-in 0 FATY | -4n 0 4+ “u
T T T T
Figure Uu
For large N, [xs(u,o)l is dominated by |¢k| at the
points Z%E, n =0 and n odd. The zeros of [xs(u,O)[
at 22”, n even cause the AF to vanish there. Figure 5

is the level curves of X.

. o N :
] X
T
—d %; 1

oo
43

© P O
o o

+ £ 3
: I T :
) T T :
! ) 0 0 ) g
! 1
:_' ' 9 0 v :
;. 1
- "

- Figure 5

\
-
W wewy ., P ORM

»
S

Y
S

L . . e N B 3 \’

SRR TR S ot ~ N - P A - - o - - o - S > . - -

— - R SR PP S a — A hw PR Al A .8 e & A_AA_'L-L- PPN S A"_ L'JA L L'l\‘ - NN " & % .a"a" @ ~a S




0 AR s

YT

——

— -

e Dt S ge g

27

§6. Resclution and Ambiguity

The concepts of resolution and arbiguity were intro-
duced in Section 3. These twe ideas will be studied in
detail in this section. The level curves of the AT nesar

the origin will be shown to always be ellipses and several

exanples will be calculated.

56.1. Resolution

A more precise definition of resolution than that
introduced in Section 3 will be used here. The resclution
of f is the width of the AF at the origin along the
coordinate axes. The smaller the width, the better the
resclution.

Since we are interested in the shape of X(u,T) near
the origin, let us approximate X{u,t) by a truncated
2-dimensional Taylor expansion about (0,0). Let X be
an arbitrary AF and f be the corresponding generating

function. Let subscripts u, and 7T denote partial

differentiation. Then by the definition of the Taylor

series,
(1) x(uaT) = X(0,0) +x (0,00u+X (0,001 +% % (0,0)u’
b b u 9 ™ T b) 2 uu b3
1 2
+XUT(0,O)UT +§ XTT(O’O)T +

It is aszumed, and will be verified later, that for the

Fiven function f, X = X Equation (6.1) may be

ut Tu’
normalized by dividing through by x(0,0). This was shown

in (4.3) to be Vf“2. Henceforth, assume that we have

)
. )

s '3 ;'l"
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recrmalizeld the function £ by o f an? therefcre

Calculation of the first rartial derivatives is

f

(2) LRt t] £ ¢ at.
Define

f 2
(3) a = J t] £(t)]° dt
then
(4) a = ix (0,0).

u

Ultimately we only will be interested in the magnitude

of x. TFTrom (L.8) we know

(8) |Xf(u,1)| = | (u,1)] .

v
A I, f
a

Consequently, without loss of generality, assume the

function we are considering in (6.1) is f(t-a). In that

o case, from (4.6) we calculate the partial derivative of the
L. corresponding AF as,
r’ p) 3 iau
- 3 _ 3 1 . s :
- = xTaf(o,O) = g2le T, oy = e+ X (0,00 = 0.
5; Similarly, using (2.11),
i , 2
' (5) x (0,00 = i J v |2 av.
T 2m
Define
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29
- 1 f 2 .
(7) b = == J VIF(V)| © dv = -ix_(0,0).
27 T
Assume that the F.T. of the function f which we are

considering in (6.1) is suitably translated by b, then

it can be shown that,

Eenceforth assume f and TF have been so translated and
the first partial derivatives vanish. (6.1) may now be

simplified to

) 1 2 1 2
(8) xCu,t) = 1435 x,,€0,0u X (050Ut 45 % (0,007 +..,
The second partial derivatives are
2 2

(9) X (0,0) = 'J t7 £(e) | © at

uu
and
(10) X (0,00 = -2 [v2[Fren ]2 g

27 (05 5 J \ v V.
The mixed partial derivatives are
(11) XuT(O’O) = j% J vIF(WTTTTY - F'(v)T(V) ldv

and

(12 x_ (0,0)
1u

N e

f —— _—
J thf' () E(t) - f()f (1) lct.

Notice using the transform pairs, -itf(t) <> F'(v) and

f'(t) «» ivF(v) and Plancherel's theorem that

s e . .
(13) :%JVEF(V)F'(V)—F'(VTTTVTJdv :%Jt[f'(t)TT_T-f(t)TTTt)]dt

P P
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Let the constants in (6£.3), (6.19) and (6.11) be
defined =&, -D an? -u resvectivelv., Then the

aylor expansion up to the quadratic terrs in (£.8) mav

[a} o)
“ <

1 %[d2u2+2uuT D17,

(14) Xx(u,T1)

trq

or ¥ ecual tc a constant, this is the equation of an

ellirse in the (u,t)-plane. That is, given ¢ ¢ [2.,11],
the level curves of X near the origin are ]
2 2 2 2 2 a
(15) d"u” + 2put + D't = c”. J
It is known that when u = 0 the major and minor axes N
of the ellirce in (6.1%) lie along the coordinate axes of i
the (u,Tr)-plane. To see what conditions need to be met ?
-9
to have u = 0, let &
: 4
F(6) = a(ne® () i
and T(v) = A(V)el¢(V).
py (6.12)
r..2
yoo= -J ta“ (t)6 ' (t)dt.
By (6.11),
- _1‘ 2 A !
b= - j vAS(v)at(v)dv.

Hence wuy = 0 if f is real or F 1s real.




Let us apply these results to some specific ATFs.
Recall Example 1. Since f 1s real-valued, u = 7 and
the ellipse around the origin has its axes on the coordinate
axes. In this case it is simpler to use the zercc of the
AT along the coordinate axes than to calculate d2 and
D7, Refer to Figure 2 and we see that the width of the
main lobe is

At = LT

and Au = 2n/T.

Therefore, for a large pulse width T and a given c,

the level curve near the origin is depicted in Figure 6a.

?

4

,

—

.
\
S
0 b.

Figure ©

Hence, the larger the pulse width the better the resoluticon
of u (target velocity). Conversely, the shorter the
pulse width the better the resolution of the 1 wvariable

(target range) (Fipure Cb).
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We showed, in Example 3, a signal that exists for all
time results in perfect resolution of the variable in
(dorpler shift). This is equivalent to letting the pulce
width of Ixample 1 go to infinity. The consequences are

intuitively satisfying for if the transmitted signal iz a

th

sinrle frequency for all time,thenany shift in freauencv of
the returned signal would be readily apparent. Conversely,
an attempt to resolve the time delay variable from such a
signal would be futile.

The last examrle concerning resolution will demoncstrate
how to simultaneously achieve good resclution along both
axes. The idea of using a linear FM signal to achieve
such resolution characteristics was a major development in

radar technology. Linear FM signals solved the problem

of extending the range of a radar system without concurrently

degrading range resolution.
Example 5. Let
i%t2
glt) = e £(t),
where
f(t) = PT(t) as in Example 1.

Use Cdefinition (2.4) to calculate the kernel function

Yg(t,T) as

iatt
e

(16) Yg(t,r) yf(t,r).

Then

I T Y - . . . . .
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2 . ,
[CTEEED] sin{ (u-at) (T -LEL)] for |t] = 27
<
A (L,T) =
£ d elsewhere.
c() is not real-valued and it can be shown G(v) 1is

nct real-valued, hence, u # 0. The level curve of the

A

ry

is a rotated ellipse. Again it i, simpler to

calculate the first zeros along each axis than to

calculate d2 anac DQ. Let T = 9, then

ieaa e

(ol N

IXg(u,O)I = =|sinCuT)].

So the width of the main lobe 2long the u axes is
Au = 21/T

This is unchanged fromExample 1.

Let u = 0, then

Ix (0,1) = 2 ginfarcr -dxhyy .
g art 2

B bbbl Blbedecbndededdent il ines

For small =

T - lgi_

¢
3

hence the first zero along the t-axis is approximatelv
T/wa and

AT = 2T/ma.
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Cconsequently, for a > 1 the resolution of T ha:z heen
improved. The level curve for given ¢ ani large 7T

is depicted in Figure 7.

P RS T W

cl~ ¥

%
N

Figure 7

§6.2. Ambiguities

The AF 1is also useful in characterizing the inherent
ambiguities in a given radar signal. Should a given
function have peaks indistinguishable from the peak at
the origin, then identifying the point which corresponds
to the actual target parameters becomes unclear.

Consider Example 4. Here f(t) is a pulse train.

The pulses are of width T/2 and are periodic with

period T. Intuitively, one might reason that if the

first pulse leaves the receiver at t = 0 and does not
:. return until t = 2T, then it will be unclear whether the
;' returned pulse is a reflection of the first pulse trans-
f. mitted or the second pulse transmitted at t = T. The

reflected energy must return to the receiver before time




Ty RANAIE A S Y AR Sl i IR e

t
n
3
fn
[ Y
3
t
’_)v-‘
m
]
)
(@]
m
4o
@
3
ct
Q
jod
3
fu
3
tr
[

)
jon
]
0
’_l

<

I}
+
»—11
m
t
pe

1
I

me

Y]

r

urc

oAl
~—
(]

D

Jelav ¢f tho returnel pulse. The AF (T

Furc

}
]
- - . - - A

centers RO S S N o= 021l el. 4
]

4

- T T~ - - — N - -~
: 2.52 chiaracteriCes uncertaints in the U 4
TaraTaT il 720t Is not so realile aprarent when Tne )

)
1
]
'
-
t
~~
4
Vi
3
w
O
=
1]
ct
b
(e
3
9
1)
3
3
4]
+
oy
D
>
o)
™
]
o
G}
r—+
3
D

o
3
v
"
3
(
'
bl
I

Figure 8

To derive the AT for f, calculate the kernel as

6(t+5-nT) [ 8(t+7-mD),

y(t,1) 5

"
ne~18

-0 ms-—co

3

IO SRR N

y(t,t) 1s zero except when 71 = kT, k = 0,*1,... .

Therefore,
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Conseguently for each 1 = kT, k = 0,+1,... ¥(u.,7t) is
an irpulse train and the AT is a lattice of points.
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§7. The AF as _a Signal Analysis Tool

The AY will be studied as a general analytic tocl
in this section. The guadratic phase character of the AF
will be generalized and studied. It will be shown how the
AT characterizes the Heisenberg uncertainty principle and

several examples will be calculated.

§7.1. Decomposition of a Linearly Transformed AT [12].

Let X Dbe a known AF of a given function f. Let

L bhe a real-valued matrix,

ca b

(1) L=( )
c d

Furthermore let L map the coordinates (u,T7) to (U,T),

i.e.

(2 4)

Then define

x(U,T),

n

(3) XL(U,T)

"

so XL(U,T) X (au+bt,cutdr).

Thecrem. Let X be the AT of f and define XL as in

(7.2). XL is an AF if and only if det L = 1.

Proof. First the necessity of the condition will be

verified.

Since L(0) = 0, then IXL(O,O)I = |X(0,0)]|. Therefore

e
s e

RO |, 4 l_’"-‘-""'J'x_ﬂ" 4o
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from (4.19) we conclude

iy | [1x¢usr 12 dudr
JJ

[JIXL(U,T)|2 dudrt.

By definition (7.3) we may write

(5) [f[x(u,T)|2 Gudt

”[x(U,T)I2 dudT.
J J

J

Assume the Jacobian does not vanish in IR2 then we may

write
2 _ I 2 13(u,m)
(6) JJIX(U,T){ dudt = JJ[X(u,T)! {STﬁi?j dudT,

where the Jacobian is

b
a(U,T)] ) (a ) )
93V = det = ad - be.
[a(ﬁ;?? o 4

Thus (7.%) is only true when ad - bc = 1.
Next, given that the det L = 1, it will be shown

that X defined in (7.3) must be an AF. This will be

L’
demonstrated by decomposing L into "elementary" trans-
forms which are equivalent to operations on f which do

not alter the integrability of f. Therefore the resulting

function, fL, may be used to generate an AF.

Let L be a matrix of form (7.1) such that det L = 1.

Let P be defined for some o € IR,

+ -Q
(7) P(a) = .
0 1

VQ Let Q be defined for some B8 ¢ IR,

9
b .
e
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1 0
(8) Q(B) = .
-8 1

Then if ¢ # 0, by substitution it can be shown,

(3) L = PGa)Q(BIP(Y),

5
5
[0}
3
]
Q
"

1 . -1
c(l-a), B = =-cC and vy = c(l—d),

If b # 0. then it can be shown that

(10) L = Q(a)P(8)Q(Y),
1 21
- where a = B(l-d), B = ~-b and vy = B(l—a).
, @ 1
If both b=0 and c¢ = 0, let a = 5o then

{
= 0
(- ¢ (11) L(k) =
\ 0 k

We will show that for some A € IR,
20l (12) L(k) = Q(a)P(BYO(YIP(-A),
if‘ where o = —L(k-l) B = kX and vy = ;L(}--l). This mayv
: KA ’ KX K : e
:;f‘ be shown by fixing A € IR and noting
g 1
- R
o k X
[~ (13) L(K)F(X) =
. 0 k
[ ]

This is in the form for the decompositieon (7.17). Equaticn

(7.12) follows by noting that PTl(a) = P,

~ Ill\' i
ety 'l._ ""."
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Thus L can be decomposed into elementary transforns

of the form P and Q. Example 5 demonstrated that

LA 2o 200 Jati damer g

transform P was equivalent to multiplying f by a linear

FM signal. That is, given a function f, its AF, X,

and the transformation P(x) as defined in (7.7), then

(1u) Xp(u,T) = X (u-gT o7 )
and

i%‘t2
(15) fD(t) = f(t)e

Similarly, given f, X and the transform Q(8)

defined in (7.8), we will show that

(16) XQ(U,T) = x(u,7-Ru),
and
A
(17 £,00) = (218) £ (1) se g
iiletQ _i%\/?
Use the F.T. pair e <> Y12nB e and the
convolution theorem to calculate the F.T. of fQ as
F (v) = (1)° F(we
Q
Then by definition (2.11), the AF of fq is
.R u)2 B( +u)Q
~ lf u a——- 1‘2“(\/ -—2 "'l? \" § iV'['
XQ(U,T) = QnJF(V +2)F(v —§)e av,
_1 uy_ uy _iv(t-uB)
= o J F(v +2)F(v -2) e dv,

= X(u,T-uB).
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fD and f are still Lz—functions therefore ¥

Q L

is well defined and the theorem is proved.

An interesting application of the theor:m is in

property 7. There we saw that if

p
(18) FL(8) = f(at) "

then

w .1,
(.Lg) XL(UQT) - TaT Xf(as au)-

This is transform (7.11). Therefore, according to (7.12),

(20) flat) = A(((f(t)e Yo Ye Yre ,
1 1,1 .
where o = i (a-1), B = ax, y = ;X(;--l), A is

arbitrary, and A is the constant of proportionality

dependent on a and A.

Example 7. TFrom (2.13) we know XF(U,T) = 2m Xf(T,-u).
Thus the AF of TF results in the linear transform of

the AT of f represented by,

0 1
L = .
-1 ¢
From (7.9) we may decompose L into,

L = P(-1)Q(1XP(-1).

Therefore a real-time spectrum analyzer may be constructed

as follows;
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F(v) = 2n[(f(t)e

This is depicted in Figure 10.

£e) | il F(v)

pify

Figure 10
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7.2. Central Moments and the Uncertainty Principle

Signal duration and bandwidth are frequently used
quantities in signal analysis. Perhaps the most common
way to characterize these features is in the moments of
inertia. In the following, the central moments will be
shown to be the derivatives of the AF at the origin.
The shape of the AaF will be related to the Heisenberg
uncertainty rrinciple and several interesting examples
will be presented.

In most signal analysis applications, f(t) 1is the

complex representation of the real-valued signal of

interest. Therefore the central moments will be defined in
terms of }f]Q. Define the energy of the function as

f 2
(21) my = | PE(E)]© at.

J

By definition (1.3) and equation (4.3) we also note
- 1l |2

(22) m. = fl = x(0,0).

The center of gravity is defined

2 gt

]
(22) m, = J t £ =
0

We will henceforth assune my = 0. This is a valid
assumption because we may always translate f to make
my = 0. Tinally, define the moment of inertia or effective

signal duration as,

4
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.
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This was defined as d in Section 5. Rv definition

(1.3) we mav also write

(25) mo= Luescor? = g2,

My

N

~

f are defined;

Similarly, the moments of F

P2 = x(0,0).

r
(26) M = - J[F(v){z dv =

[a]

1 f 2 dv .
M = — — =
(27) My = J v| F(v)] Mo 0 (by assumption),
and
( [
(28) M, =2 [ vEir(w 1?2 ¥ - Luyrcon? = p?,
2 2T ] MO MO

Recalling equations (6.9) and (6.10), we see that

(29) m, = -qu(0,0)
and

2 = -

(20) M2 XTT(O,O)

Thus the width of the AF function along the T-axis
depends on the spectrum of the generating function and the
width along the wu-axis depends on the duration of the

signal. The Heisenberys uncertainty principle (UP) is

(31) tef(e) 1IvE i 2 SrEr?

or

. - - Ky . W - ‘ . - . . - g . . -
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A
p .
n:‘;
. 1
b ~ ‘ X > =
- (:2) rizI.? > 5
8 Thus the curvature of x at*t the oririn is constrained
X byothe U
N . 1
(:%) (L)% (2,0) = =,
Uil TT ?

Jnlike the Wigner distritution of the next chapter, this

does not restrict ¥ from becoming concentrated atout

the orifin. Klauder demonstrated a compressible AF in
13e90 [77.
. We next consider the signal duration and bandwidth i

cf the function f_ . f is the generating function of

- L L
= the linearly transformed AT, Xqo defined in (7.3). To

simplify notation, given f, 1let the moments of inertia

of f and T Dbe

(34) W = m

-x. (0,0) (from (7.29)),
uu

o
3
o,

(35) Wwo= M, = -x__(0,0) (from (7.30)), }
' T .
Li respectively. ﬂ
Qi Pecall in Section 6 we defined .
- _ - ]
{ pooo= XUT(O,O) XTu(O’O)' 1
. y
g This is also known as the mixed moment of f or F.

lote the corresponding moments of fL and PL as Wi, %
q WL and I Then using the chain rule we can differen- i

. . .. [ . . . . . . - RN . .. SN .
N . S . . S - Lot . PR . . . - e . .
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tiate (7.3) to show

. _ 2 2

(36) w,ooF atw + 2ac u + cW,

. _ 2 2
(37) WL = b'w + 2bd p + d°W,
and
(38) UL = abw + (ab+bc)y + cdW.

These relationships will be applied in the following

examples.

Example 8. Let r ¢ Lz(ﬂ?) and real-valued. Define

L0, 2
l—z_'t
(39) f(t) = r(t)e
The F.T. of f 1is
cory 2 iv .0 V2
¢ it . -z 12(t - 32)
(40) TF(v) = J r(t)e 2 e thdt = e 20 J r(t)e 2 2 dt.

This is not, in general, computable in closed form.
Usually o 1s assumed large enough so that stationary

phase arguments may be applied. Then

yl?
(41) F(v) = f—ﬁ-e 207 LYy,
(o} Q.

This may be used in (7.28) to approximate the effective
bandwidth of F as
v |2 2

¢
(42) W = = V2|F(v)|2dv -1 v2\r(~) dv = a” w_,
r 2m ol Q r

where W was defined in (7.24).
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We may use the results of the previous analvsis to
get an exact expression for effective bandwidth. TFron
eguation (7.15) and (7.7) we see that the transfornm
matrix is P(a), and a =1, b = -a, ¢ = 0 and & = 1.

Hence from (7.37) we see that

. 2
b3 W SR - 2 + W
(43) L a W au .
r 1is real-valued, hence L = 0 and
_ 2 .
(ay) W = aow v W,
L r r

For large o, the equation (7.44) agrees with the approxi-

mation (7.42).

Consider equation (7.43) as a gquadratic in a. For
fixed r (not necessarily real-valued) W, W, and wr
are fixed and (7.43) is a parabola opening upward.

For
u, = 0; min wF(a) = wr at o = 0, and for
v # 0; min W_(a) = W - uz/w at o = p /w_.
r ‘ F r r r r r

Hence we see the effective bandwidth decreases for a

b, > 0 (Figure 11).
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Figure 11

Ixarpie 9. Let r € L°(IR) and real-valued. Define

-l%tz i'é]-é'tQ .

(4%) fL(t) = [r(t)e 1= e
Using (7.7) and (7.8) we see that

1-aB «
(486) L = P(-a)0(R) =

-8 1
and
(47) XL(U,T) = XP(U-GBU+GT,-BU+T).

r 1is real, so uy = 0. Fix o € IR then by (7.36),

(48) W= ow (B) = (1-0p)? W + X W

Expanding we obtain,

‘A‘J

s WL ;o

—as P

N, BRI

g o AW

l:.A

It

T,
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L]
-
r,

) (i) : e~ .

49 i C = W W )R - 24 + . -

( vy (x w i )8 2¢wre W, J

This 1s a guadratic opening upward with a minimurm at 1

aWw
(50) B = “é"’?“'
N1 . .
W +".‘

)

2 2

For g W, >> Wr, this may be approximated as »

/ 1

(51) B . = _4__1_g_2__: i ’

min 140 /o 2w a ]

-1

Fence, we see that although a signal disperses when passed

(WL

through a quadratic phase filter, in this case we get some

signal compression (Figure 12).

f
- /
l\\\\_,////
L_ 1
L o
- \J V| *7
- Bmin 8
. Figure 12
‘
! . .. . . ;
From (7.%1) and (7.48) we find the minimunm sirfrnal duration ﬁ
to be, i
W :
_r \
W(g . )~ "7 ?
r “min o )
R
)
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In this chapter the Wigner distribution will le

|

presented. It will be defined, its salient propertiec will
be stated and proved, and examples, which will serve *o
illuminate those rtrcperties, will be caloulated. Tinaller
some interesting results concerning the romonts cof *ihe
Wigner distribution (WD) will be presented.

The Wigner distribution was originally introduced I
the context of quantum mechanics in 1932. It was reintro-
duced by Ville in 1948 as a tool for signal analvsis. The
most recent applications of the Wigner distribution have
been in the field of optics. 1In 1982 Claasen and Mechlen-
brauker again studied the WD with regard to its potential

a

193}

a signal analysis tool [31].

§¢. Definition

3

he WD is defined for centinuous functicns 7,
rarpting the real line to the complex plane, which are of

.. 2 . . .
finite energy. If f & L°(R) or if f 1is not continucus
then f will be considered a seneralized function and
cperations on f will be in the distributicn sense.

The WD 1ig defined as

) T o T -ivt
(1) ‘.’J(t,V) = J f(t +7)f(t——2-)€ dt.
liote that the definition is stated as an "auto-Wigner
distribution." This definition easily generalizes to a

"cross-Wirner distribution.”
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As in the case of the AT we define

(2) yit,r) = f(t+%)f(t -%).

Then for fixed t, the WD is the Fourier transform with
respect to the variable 1t of the function vy (t,T). That

is ¥t ¢ R,

(3) W(t,v) = J y(t,T)e-iVT drt.

Let TF = %. Then it can be shown that

o1
(W) Wf(t,v) = 37 WF(V,—t).

If we define

(5) T'(u,v) = F(v +321~)F(v-%)

and recall (2.6), which defined T(u,v) as the two-

dimensional Fourier transform of y(t,T), then

(6) Y(t,T) < W(t,v) < F(u,v).

This says that the WD 1is the intermediate result of the
iterated two-dimensional F.T. of v(t,T) when the
transformation with respect to T is taken first. It

was shown that for fixed v ¢ IR T(°*,v) € Ll(D?) hence,

t —_——,
(7) W(t,v) = 5% J F(v +%)P(v -g)elUt du
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§9. Properties of VD
The properties will be listed in somewhat the same
order as in the previous chapter. Where proof of the

property is cimilar to the argument for the AF, the

property will be stated without proof.

1. Global Maximum

The WD has global extrema at theoriginonly if f

is real and symmetric. This property does not necessarily
generalize to the "cross-Wigner distribution." If

f:I=> 1R and f(t) = #f(-t) then
(1) [Ww(t,v)| = |Wo,0f.

This property is stated in terms of the modulus cf
the ®WD. Although the WD 1is always real (property 2),
its value at the origin may be negative, e.g., the case

when f 1s odd.

2. Symmetry
a.) The WD, regardless of the nature of the function

f, is always real valued. That is

(2) Wwit,v)

"

Wit,v).

1]

Proof. lNote that ~{t,7) y(t,-1t). Then by definition

(8.23),

Wit,v) = [ VT?:?7e+lvT dt = I y(t,-r)e1VT dr = W(t,v). #

. - PR S . . . - e . . ..~~‘\~\.
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This property generalizes to the "cross-Wigner distribution"

since Yfg = Ygf’

b.) If f 1is real-valued and symmetric about the

origin then,
(2) W(-t,=-v) = U(t,v).

Proof. Consider only the case f(t) = -f(-t). Then

Y(-t,1) = f-t+ (-t =-3) = £t -D)f(t +T§) = y(t,1).
The property follows from definition (7.3).

3. Translation
a.) Translation of the function f results in a
translation of the WD. Let Ta be the translation

operator. Then

(4) WT f(t,v) = wf(t-a,v).
a
Proof. ©Notice that Yo f(t,T) = Yf(t-a,T). Consequently,
a
7 _ f —iVT _
hTaf(t,v) = J yf(t-a ,V)e dt = Wf(t ~a,v). #

b.) Translation of the F.T. of f also results in

a translation of the WD of f. If

T F(v) = F(v=-a)
a
() and h(t) «» F(v-a),
then wh(t,v) = wf(t,v-a).
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Proof. It is known that h(t) = e?@TE(1).  Hence

: Ty _: T
ia(t +2) ia(t 2)

r — .
wh(t’V) = J f(t +—12:)f(t-—-;~)e e e-ledT
N ( T Ty —i(v-alt
= J £(t +§)f(t ’536 dr = Wf(t,v—a). #

4. Modulation by a simple sinusocid.
The previous property may also be stated in terms cf a

modulation operator. That is, let

ME(e) = e o).
Then (9.5) may be written
(86) wMaf(t,v) = wf(t,v—a).

Similarly 1if M_F(v) = e Y F(v) and h(t) «» 71 F(v)

then (9.4) may be written
(7) wh(t,v) = wf(t—a,v). %

An interesting computational rule is a result of (98.u) ]

and (89.6). Combining these two properties we get

(8) waTaf(t,v) = wf(t-a,v—b).

i

= 0 and change the sign of the parameters a

——
-
-
o
~+
rt
H
<
PN L A A

and Db. We obtain

(3) wM_bT_ f(O,O) = Wf(a,b).
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P T

Hence, the WD of a function f may be evaluated at any
point (a,b) in the plane by first translating and modulat-

ing f, then evaluating the WD of the resulting function

el bt ol

at the peint (0,0).

o
5. Multiplication of two functions. J

If h(t) = g(t)f(t) +then

o1
(10) wh(t,v) = J Wg(t,r)wf(t,v—r)dr.
£. TFiltered Functions.
Let h(t) = (gsf)(t), where g is the impulse response

to a linear, time-invariant filter. Then

(
(1D wh(t,v) = J wg(r,v)wf(t-r,v)dr.

7. 1Invertibility and Uniqueness.
From (8.3) it is apparent that given a WD W, one can
uniquely invert the F.T. to recover the kernel function

Y. Hence, given W(t,v) dis a WD, then

MDA ) MO

T 1y - L ivt
3 (12) f(t +2)f(t 2) = 30 J Wit,v)e dv.
é!
. = I =t - L
{ Let tl t +2, t2 t > and we see that
a 10 tl+t iv(t —t2) )
- 2 —_— -
« (13) f(tl)f(t25 5w J W( 5 ,v)e dv. a
; R
f = .t =0 t
F If t tl ) hen

f
‘ (14) F(OTO = ﬂlﬁJ W(%,v)ewt av.




Hence the generating function £(t) can be recovered to
within a constant Tf(0). As in the case of the AT, it
can be shown that this constant must have modulus 1.

Furthermore, by letting t, = t_, = t in (9.13) we have

1 2
the unusual result that VvVt

o)
7

f
— ] Wit,v)av.

(15) jrey = ok
J

The novelty of (9.15) lies in the fact that the WD 1is nct
always positive. Yet (9.15) says that regardless of the
nature of f, at any particular t, the integral of the

WD over all frequencies results in a nonnegative number.

8. Volume Invariance.
1 If , 2
= = nf.
(16) 5o JJ W(t,v)dtdv £,

where the Lz—norm of f was defined in equation (1.3).

This is a direct result of (9.15).

9. Analytic Signals.
Let f be the complex representation of the real

signal s(t) as in (A.3). Then

SRS
(o]

f
J ws(t-r,v)h(r,v)jr for v o~

(17) wf(t,v) =
0 ale v o< O,

where h(r,v) = =(sin 2vr). Equation (9.17) is the

o

convolution of the WD of the real-valued signal =c(t)

with the Fourier kernel h(r,v).




............................

R Ao 24 B A RAn 1 Wi i B AL e e Ans S S S Rl S A ST g A

Procf. Recall (A.6) to see¢ that

(2S(v +%) for u > -2v

S(0) u = =2v

~~
’.._J
o0
s
i
~~
<
+
N
N
1
—

0 u < =-2v and
.

KQS(V-%) for u < 2v

F(v-—%) =< S(0) u = 2v

0 u > 2v.

Temporarily assume Vv > 0. Hence, using definition (8.7)

we see

. _ 2 2v Uy uy _iut
(19) wW_(t,v) = = S(v+=)S(v -2)e du.
f T oy 2 2
Let
1 for |u| < 2v
p,. (u) =
2v 0 elsewhere.
Then (9.19) 1is
2 u u, iut
(20) wf(t,v) = = f pzv(u)S(v-+§)S(v-§)e du.

. 1 . .
T —_
_ It is known (Wt) sin 2vt 2 p2v(U)' By the convolution
§ theorem, since ws <7 I'y we conclude
o Yy 1
[ (21) W (t,v) = = (Z)sin(2vr)¥W _(t-r,v)dr, v > 0.
f m r s

b
[
b Should v < 0 then (9.18) states that
@
@
9
b -
i‘ - - . = ~ '-'.'-"..‘.'--~“"¢' - _." .'.V'o.' .« . -'-\.‘-. .. .
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verified.

§10. Examples

Exarple 10.

fixed t

b
- for T > 0,

S -

(1) wW(t,v) = J

Lamn o o

~

Hence T (v +%)F(v -g)

Let

¢

3

\ F(v +§J =
F(v -%) =

£(£) = p (1),

= =27 + 2|t] to 1 =

2(T-]t])

2(T-1t])

wi{ov)

/N

0

and note that the limits of integration of the WD

-1
e

(
. \jj 0
[ T

!

[

Note that since

is the same as the

gg\v//

f 1is

o maximum at the origin.

AT.

>
v

for u < =2v

for u > 2v.

Yu ¢ IR, and the pronertv is

Then refer to Figure 1
for
2T - 2|t|. Then

(%)sin 2v(T-|t|) for |t|<T

v
Td‘[

0 for

VV(#OJ aT

>
T o T £

Figure 13

real and even,

Exc

the WD has a global

ept for a scale factor, the WD

Cuplicnduh 2ok e st agh st d T Ty LAute

lt]|>T.
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o Exanple 11.
- et |t < T
;ﬂ Let f(t)y =
[ 8 elsewhere.
From (2.10) and (10.1) we conclude
1 [ETEEYY sinf2(v-a)(T=1t|)] for |t} < 7T
(2) W(t,v) =
0 elsewhere.
Exarple 12.
Let £(t) = Aelat, ¥t € IR and some A € €.
Neote that y(t.t) = |A|2 a4t .
Then formally,
r . - -
(2) wWlt,v) = |A|2 J et VT ar = 2ﬂ|A!2 §(v-a),
where §(v) has been previously defined in (1.7).
Example 13.
.a_ 2
151:
Let fl(t) = e . [t] < T.
18¢°
Define g(t) = e “ “and  f(t) = pﬁ(t). We will find the
Wp for ¢(t) for all time, then use Example 10 and
property 5 to find the WD of fl. Formallv,
.a T2 .a T2
¢ iz(t +3) -iz(t -3)° _.
Wolt,v) o= ] e 2 2 e 2 2 e VT drt
3 J
r - - .
= J elatT e VT3t = 2nd(v-at).
».-
.;.-' "{ ) S - . S ] . ... R -...--'-."!A SR ..._ L . . ..‘.' o - . .
N aha s g P ' . NP 4- < I R {..b s"-‘q:;'*‘:n-"“ "r ‘ﬁ.l.;'- hn\; "é‘ .-_g_r;__,'_i L o ~.._‘. 3 ~odh ‘.-A ..__‘; _A __n 2k ool
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Recalling (12.1) and (9.10) we cocnclude

, N - 1T 2 . rh

hfl(t,V) = §E‘J 2n6(P—&t)z§:;S Sln[L(V—F)(t-lTl)]dP
) . - -
:(;:é%) 51n[2(v—at)(t-]1]] ltl < 1
i Q elsewhere.

This mav alsc be written,

(4) wfl(t,v) = Wf(t,v-at).

We see that nmultirlying a function by a linear FM sigrnal

results in a linear transform of the original ¥D. *

PRary

Example 14, Let £ be given, and W(t,v) Dbe the WD of

f. Define %
(5) fL(t) = (27b) f(t) ne
X
We will calculate the WD of fL. 4
1.2 .b 2 a
IEEt -1 =V 1
Using the transform pair e <> yY2mi1ib e . :
we can formally calculate the FT of fL as A
p
% —i%v2 !
FL(V) = (i) e F(v). 3
Use the definition (8.7) andi
1 f Uy . uUs iut
vl . = = F (v+2)F (v =-3)
L(t v) 57 J L \% > L v 5 du
1! u u -ibuv iut
= ?}J F(v +2)F(v —2) e e du

=z Wf(t-bv,t).

......
~~~~~~~~

............................
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511. Central !oments

Tt is ¥nown that the central mocrments of a function

s &

provide some insignt into *the share and character of a

function withcut fully Zecoviting it. The following will

reneralize the notion of cen*ral morents in B to local

1
)
P
_.J-L. -

ant global morentes in F°. ¢ will see that these
moments of the WD are some well known quantities in

sifnal and network analysis.
2

‘h_‘ '_- A g bt )

Let the central moments of |f| be m,, m and
m, as defined in (7.21), (7.22) and (7.24). Let the
moments of |P]2 be M . M, and M, as defined in (7.25)-

(7.28). We will first study the local moments of the WD.
For fixed t, the local averarge of the WD with

respect to v has been calculated in (9.15) as

r
(1) nolt) = | HCrway s lece)| 2.

This is the power in f at time t. The local center of

gravity with respect to v is

g

o f dv
(23 nl(t) = J vW(t,v) ]:16—(—{)- .

Y
-l

This may be formally calculated using Fubini's theorem and

the TF.T. pairs v <= 27n8'(1) as

. AR S S |
s . -

4
k. ,
.- 1
Y J
1 4
L ¢ |
.- 1
" 1
q
t; -
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- f T T '
nl(t) = J [f(t +“2—)f('t—§)]5 (t) i‘:)’('?‘t'j,

- Lires T _Iy_f Tyen T - dt
= Q(L (t+2)f(t 2) -(t+2)f (t-z)]su) ——3-

J h;?f7’

- - 1__ z £ FiLyN
= QEE?tS LEr(o)T(o)-f ()£ (o) 1.

If f 1is real-valued then nl(t) = 0. If f 4is complex-
valued then (10.3) can be put in a more meaningful form.

Motice that since

[Ff' -fFf'] = 1Im ff°',
then (10.3) is
. () . 4 '
(4) nl(t) = Im s Im{dt 1n £'(L)}.
Therefore if Ff(t) = a(t)ele(t) we see that
(5) nl(t) = 0'(1).

For complex representations of a real-valued signal
(Appendix A) this is the instantaneous frequency of the

function f. The WD permits the generalization of

instantaneous frequency to arbitrary complex-valued functions.

The 1ocal moment of inertia for fixed t 1s

.1 )2 ¢ _dv__

(%) n2(t) = 5‘; J (V—ﬂl(L)) W(t,v) ng(‘t)
1 [ 2, dv 2
= é"—T J \% "'\.(ts'\/') Hf‘](t"’ - nl(t) .

-'7.1

P ]

pnincdinadimni e

’
]
i
]
]
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The WD 1s not always positive so interpreting this as
the spread of the WD 1is not entirely accurate. To
derive some meaning fron nz(t) we nust put (10.6) in a

different form. Use the T.T. v2 «> 21§"(t) to formally

0
v

alculate n2(t) in terms of f, /e see that
(7)1 (£) = et [ () FTT=2] £ ()] 2+ FTEI] = . (1) 2,
2 uﬂj(u) 1

It can be shown that

- 21 4 £'x)
(8) nz(t) = 5 Re{dt 26D }
If f(t) = a(t)eio(t) then
1 42
(3) n (t) = - 5 —1njal(t)]|.
dt

Hence the local second moment of the WD is independent of

the phase of f., Furthermore, for any o € IR and any

Ceat.

(10 n2(t) = 0 if and only if a(t)

The sufficiency of the condition i1s shown by substitution.

The necessity of the condition is shown bv letting

42
(11) ~5 Infa(t)| = 0,
dt”

and interrating twice.

Concider now the local moments of the WD with resrect

—— — DA A ey it e Sath Jaatn Sett it R Ll S A A At A A S R L A i S
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Similarly, the local center of gravitv is

ASAR A Sk At Bl S Ba At

(1) O =] ey BN

Tr.iz can be shown to be

(14) (V)= ?ﬁ?‘ﬂ [F(O) T (IY-FODIF (V) ]
(15) N = InfEY = ~ImSnRn)}.
1f F(v) = A Y tnen

(1¢) N V)= et

Should F(v)

is the group delav. Arain the WD

3

definition to be generalized.

be a systems transfer function, then (11.16)

permits a specific

By similar calculations, as in deriving (11.9) it

can be shown that the local moment of inertia with respect

to t 1is

2
o inlan .
dav

ST

The rlobal moments of the WD
entire (t,v)-plane, and will be shown to be

the fenerating function., f, and its F.T.,

are taken over the

moments of

F. The

~
e
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global average of the WD was previously calculated in

(9.18) as
— rr
(18) n = L JJ W(t,v)dtdv = Uf”2.
0 2m
Similarly
— 1 fr . 2
(19) N o= = W(t,v)dtdv = ! F!
0 2m
Hence HO = NO

The global mean or center of gravity with respect to the

variable v 1is

(20) n = == JJ vW(t,v) ——— = — [ VIP(V)|2 _EBL]
1 = T

2m n j Bk
The last equality results from interchanging the order of
integration and (11.12). Hence the global center of
gravity of the WD with respect tothe frequency variable
v is the same as the center of gravity of ]F(v)|2, where
F is the F.T. of f.
In a similar manner, the global mean of the WD with

respect to the variable t 1is defined as

- ({ f
(21) fi o i-H t(e,v) 2V = | ey ? S5
a N £
O i .
The global moments of inertia are defined as
_ rr B
(22) n = l (v- n ) W(t, ydvdt . —L-(v-n )QIF(V)IQ Sdv
2 2m n 2w 1 “FH2
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fr _ [
|| o= Puce, v SR < |
JJ I‘JO J

_dt

(t-ﬁl)Qlf(t)l2 X
ngi?

5 S

2 2m

We see that the moments of inertia are non-negative and
hence may be accurately interpreted as a measure of the

spread of the WD,

§12 The Uncertainty Principle
The Heisenberg uncertainty principle (UP) constrains
the moments of inertia of a function. f. and its F.T., F.

Consequently the UP must also constrain the global

moments of the WD. A form of the UP is

(1) CEECEIIVE(V > LuEy?,

N+

In the case of non-centered moments (12.1) may be

also written

(2) (t-a) FCE) I (veD)F(V) | = %Hfuz,

where a and b are the respective centers of gravityv.

Using similar notation, the global moments (11.22) and

(11.23) may be written

I U ST 2
5 N2 It Nl)f(t)ﬂ

I (v=T1. ) F(v) 12
1 FEN ng

n. =

(3) 5

Without loss of generality, assume f and F have hence-

forth been shifted so that n., = N, = 0. We will now

1 1

show that the WD cannot be concentrated arbitrarily close
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|
1
- . ‘:
to the origin. Let x and v be fixed. Then it can be 1
3
shown that, p|
. 2 1
(%) min(p“x +—7-y) = 2/x%7.
P b
0 2 , w2 .. .
If x = Htf(t): and v = livE(v)¥ then this imnlies that
for any p,
2 , ‘ " : . ‘
(5)  pirts(or? v R ? = 2ieso R
D

Then by (12.1) we conclude that

(&) pilee(or? + Frvrn? 2 e,

p .
Using cefinitions (12.3) with El = Nl = 0 this may also ]
be written .
L
2 1 - I
p ]
In terms of the WD, this is i
1 [ro 2.2 1 2 1 [ )
(8) 5 JJ(p T +-% VIW(t,v)dtdv = §E'J W(t,v)dtdv.
P
(12.8) may have the following interpretation: For fixed i
p ¢ I let ]
. 1
q () g(t,v) = p2t2 + —%—vz. g
' P
Then VYr ¢ IR, sp(t,v) = r2 is a weight function in the
e integral (12.8), which assigns the value r2 to all #
. values of the WD which lie on the ellipse, :
k
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(10) p‘t + -‘% v = r

Hence g(t,v) suppresses the values of the WD near the
origin and amplifies the contribution of the WD awav from
the origin. The inequality in (12.8) means that the D
cannot be totally concentrated in an arbitrarily small
region about the origin. If, for example, the WD were

to vanish off an ellipse such that r2 < 1, then inequality
(12.8) would not hold.

The inequality (12.8) does not preclude a highly
concentrated WD which has a small contribution far from
the origin. If the WD 1is to characterize the Heisenberg
uncertainty principle, then we must also prohibit just
such a WD. To see that such WD's are in fact impossible

we need the following theorem [5].

If as> 0, b> 0 and

Lo e A l(v-s)?
(11) W, (t,v) = _—_:::JJ e @ W(r,s)drds

i the Weilerstrass transform of the WD W(t,v), then

f 2
(12) yt,v € B, ¥ (t,v) s —2— | [£(t)]" at.
a 1+2/ab

The proof of this statement derends upon expanding f 1in
2

an orthogonal system in L°(F) which 1s related to Hermite
polynomials and is beyond the scope of this paper. Ve mav
use this result for the specific values t = 2r and v = 2s,

then (12.11) is

._Je

oy

[

P b L T L

T DR




rt
(13) W  (2r,2s) = —=— JJ e @ e W(r,s)drds.
abD -

2 2
oy -1I _ms” —
(1) - J] e ® B y(r,sdaras = -273 [1ecey) 2 gy
! 1+2/ap 4
Notice that
(15) 2/ab (1 -———l::_),
1+2/ab 1+2Yab

hence (12.14) 1is

2
fr
(16) Jj(l —e 2 b )W(r,s)drds >t ff W(t,v)dtdv.

1+2/3b

We now have an inequality using a weight function which,
for fixed a and b, goes to 1 with increasing values
of r and s. This precludes a WD as was previously
described. Therefore from (12.8) and (12.16) we conclude
that the WD cannot be arbitrarily concentrated about

the origin (or in the case n, £ 0 or Nl £ 0, about

the center of gravity).
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IV. EPILOGUE

In the previous chapters two time-frequency functions
were studied. Their properties were reviewed and some
applications shown. Attention was directed to their
relationship to the Heisenberg uncertainty principle.
In the next section we will state the relationship between
these two transforms and consclidate their similarities and

differences.

§13. WD wvs. AF

Recall equations(2.9) and (8.6) and we see that the
AFY and the WD are related by a transform similar to a

-cdimensional F.T. (Figure 14).

r(u,v)

7 N
X(u,1) W(t,v)
t Y(t,t) "1
Figure 1u

Thus

rr ] -
(1) Wlt,v) = "LJJ X(u,r)et (WE=vT) g 4,

i

and
(2) xCu,t) = f% JJ W(t,v)e_l(Ut-VT)dtdv.

There are three basic differences between the WD
and the AT, Tirst, the WD is always real-valued,while

the AF 1is, in general, a complex-valued function. The

* " - ; - . . - - L4
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modulus is frequently used in applications so it is
reasonable, in many cases, to compare the modulus of the
AF to the WD. Only when f 1is real-valued and

symmetric, is the AF the same as the WD (up to a

scale factor)., This was demonstrated in Examples 1 and 10.

The second difference between the AF and the WD
is the manner in which these functions transform trans-
lated functions. The modulus of the AF is invariant to
translations of either f or its F.T. The WD shifts
as its generating function shifts. For this reason,
Claasen and Mecklenbrauker conclude the AF is not well
suited for general signal analysis [13].

Finally, the AF and WD each characterize signal

duration and bandwidth of the generating function f in

th

different ways. Effective duration and bandwidth of
are equivalent to partial derivatives of the AF but
equivalent to the global moments of the WD. Consequently,
the WD was shown to characterize directly the rdeisenberg
uncertainty principle. On the other hand, the AF has

an associated uncertainty principle (property 11) which

is an analogy to the Heisenberg uncertainty principle.

The WD and AF have three basic similarities.
First, each time-frequency transform of f 1is closely
related to the t-f +transform of F = %. The t-f
transform of T 1is a simple rotation vf the t-f trans-

form of f. As such, Hermite polynomials are sometimes

sk
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associated with thece functions. For instance, an
orthogonal system on L2 based on Hermite polynomials
was used by Klauder to achieve highly concentrated AFs
about the origin [8]. This same orthogonal system was
used by De Bruijn in the proofs of his inequalities for
the WD [51].

Another similarity is that both functions transform
quadratic operations on the generating functior to linear
operations onthe AF and WD. Therefore, the decompo-
sitions of the AF, introduced in Section 7.2, may be
applied to the WD.

Finally, both t-f transforms yield similar constants
when integrated over the entire plane. In this case we

compare lX]2 to the WD. Tor clarity we repeat (4.19)

and (9.16).
1T 2 4
(4.19) - JJ|x<u,T)| qudr = 1Y,
and
ff_ . f"2
(9.186) 57 J W(t,v)dtdv = fi.o.

Let us define a norm on IR2 as

e [y il = ...];, 2 1/2
(3) X!, - ff|x(u,r)| duat)/?,

Then X ¢ L2(IR2) because f € LQ(IR). Moyal's formula

is 31,
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RPORF TR

() - (( Wz(t,v)dtdv = et
2™ j)

Y, 3 R

N . . . .. 2
This gives us a Parseval-like relationchip in IR

g - X .
YW ) LX ’

Therefore, in the space of Lz(ﬂiz), with the defined

norr., the transform (13.1) is an isometry.

§14. Conclusions

Time-frequency functions like the AF and WD are
important in pure mathematics and engineering. They are
functions which transform a function of time into a func-
tion of time and frequency. They inherently embody much
of the theory of Fourier transforms. Study of these
functions provides a richer understanding of the uncertainty
principle and is, therefore, valuable in the field of
harmonic analysis. In the applied fields, a time-frequency
transform helps to visualize the frequency content of non-
stationary functions. These transforms help explain the
intimate relationship between the time and frequency
components of a signal.

The AF 1is a tool routinely used in radar waveform
design. It is also wused in developing the theory of
Fresnel diffraction and Fourier optics [13]. It was shown
to provide a better understanding of linear frequency
modulation and pulse compression. The AF 1is an important

function in both the applied and theoretic fields.
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The WD has been for many years an asset to the
field of quantum physics. Recent work has shown it to
be a useful tool in signal analysis and suitable for
hardware implementation [3]. It was also shown to
generalize two common notions in signal analysis;
instantaneous frequency and group delay. The WD is
incompressible and reflects the Heisenberg uncertainty
principle. The WD is also an important function in
theoretic and applied fields.

Time-frequency transforms, like those presented in
this paper, have a broad application. It is the opinion
of this author that such functions may have even more to
contribute in such fields as spectrum estimation, and are

worthy of future study.
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Appendix A. The Complex Signal

Frequent reference i1s made throughout this paper to

the complex representation of a real signal. This ic also

ataca s AP b a7 0

known as the Gabor representation and the analytic signal.

In this apprendix we will define the analytic signal and

Y EREN

explain why it is a useful tool.

In most applications of signal processing techniques,

X 2N WO SO AN

+the signal of interest is a real-valued function of time,

say s(t). As was stated in (3.1), for radar, s may be 1

moceled as l
i

(1) s(t) = a(t)cos(w0t+¢(t)). '

Trhis Zescripticn is mathematically cumbersome and its E

Tourier transform has a lot of redundant information since

(2) S(-w) = S(w).

Conseguen.ly & complex-valued function f 1is formed so
that Re{f} = s. The Gabor representation is such a

complex-valued function and is defined

(9 £(t) = s(t) + i%(t) ;

]

. \

where 5 1s the Hilbert transform of s. s 1s defined 4

;

A . 1 I s(r) ) 1 .

L" (u) S(t) - o J-m r’—t dr - S('t) " TTt.
: :
{Z The Hilbert transform has the useful property that :
-

¢ |

N
e




(5) S(w) = -i sgn(w)S(w),

where S is the Fourier transform of s.

This may be verified by letting x(t) = prr that
s(t) = s(t) #x(t)

and
S(w) = S(w)X(w).

Then (A.5) follows from the Fourier transform pair
T -1 sgn w.
From (A.3) we see that

2S(w) w >0

(6) F(w) = S(w) + iS(w) = S(0) w

H
[

The Gabor representation solves the problem of redundancy,
but using (A.3) in calculations may be equally as

cumbersome as using the original s(t). Consequently, in

many cases an approximation to (A.3) is used in calculations:

i(w0t+¢(t))
(7) f(t) = a(t)e

This approximation becomes exact for narrowband signals.

That 1s. dzfine

F+(w) =

DY

r .
J £(t)e "t g¢

and

F_(w) =

LY
——
h
P
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|

D,
e
e
+

Q.

+

R TRy




S g

N Nl Sl S g M Sl Sal A B s S i A Sadh S R A T T T Ty ——_— e —~

Then f 1s narrowband if

I
o

F+(w) for all w < 0,

and
F_(w)

"
D

for all w > 0.

In general, the error in the approximation (A.7) is

0

r

21 { & | Flwe*t G,
m 2w j + j

- 00

e (t)

This 1is obviously zero for narrowband signals.
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Appendix B. The Doppler Approximation

This appendix will explain the doppler approximation

fﬂj and why the effect of a moving target on a narrocwband
. signal mav be modeled as onlv a shift in the carrier
frejuency.

A radar transmits an electrormarnetic sigrnal, which
when striking suitable surfaces ic reflected and refracted

irmilar to light. If the surface is moving., the reflected

1O}

frequency cf the signal will arppear to be different than
that which was transmitted. This is analogous to the
commonly deserved phenomena of a constant-pitch train
whistle appearing high as the train approaches and lcw as
the train passes. This phenomena is known as the doppler
effect.

In the case of radar, should the target be stationarv
(in the sense that the target velocity vector has no
component in a radial direction to the radar), then the

time delay of the returned signal will be

2
c R

where P 1g the constant ranre and ¢ 1is the velocitwy
of propagation. The returned signal is then a time delaved,
® suitably attenuated version of the transmitted sicnal. If

d st(t) is the trancmitted signal then the returned signzl Is

>

Sr(t) = St(t-T).
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If the reflecting surface is moving, then the range
becomes a function of time and therefore the time delay

becomes a function of time. Then

s (t) = s (t-T(1)).
r t

The exact relation between the time delay T(t) and the

range to the target is [6]

(1) T(t) = 2 R[t-Z T(t)].
C 2

Defining T(t1) = 1, (B.1) can be expanded in a Taylor

series about this point;

T(t) = TCo + T+ 3 Fo -

The returned signal is then
] 1 .o 2

s (t) = s (t-T(T)-T(tX)(t-7) == T(T)(t=-T)° = ...).

r t 2
Use T(tr) = 1t and this 1is

. 1 - \2
(2) s (t) = s ([1-T()I[t-11-% T(OI[t-T11" - ...
r t 2

Use standard notation for velocity and acceleration, i.e.

1]

v(t) = R(t) and a(t) = R(t), and differentiate (£.1)

to see that

2y,¢1
v(L)

Z
+ ot
1 C

(2) T(1)




‘T]- rv_ e v_ v vv-—-tr

-

e Ay

) <3;-a<g>
(u) T(1) = gt
[1+()v(5) 17

C 2

In radar, the velocity of preoragation. ¢, 1is nearly

tne speed of light, therefore ¢ »>> v(t). (B.2) and (Z.L)

are
. 2 T
(5) T(t) = (=)v(3)
c 2
Py 2 T
(6) T(t) = (a(zx).
C 2

By definition, the doppler effect is the linear
stretching of the time variable in (E.2). Therefore we
only consiler the first term in the series (B.2). This
is equivalent to assuming the target velocity is constant
near 1t so that v(t) = v(%). The linear approximation

of (3.2) 1is

(7) s (t) = s, [w(t-1)],
r t
where
. 2
w = 1 -T(t) = 1 - o v(it).
Finally, assume St is a narrowband signal. Then

we may write, for fixed w,

iwt
(8) St(t) = u(t)e
where
(1) u(t) = a(t)elO(t)'
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Then the doppler stretching w, of the time variabtle
of thereturned signal may be assumed to apply only to
the carrier, elwt. This seems justified for the

perturbation of t would be less perceptible on the

slowly varying function a(t) and ©(t) relative tc the

fast varying carrier. Hence

(10) s _(£) = w(tnyele (M (=T
Define ¢ 2Vw to be the doppler shift then
(11) s () = u(t-met WP
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